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EXECUTIVE SUMMARY 
 
We are developing new data collection approaches that use a combination of remote 

crowdsourcing, machine learning, and online map imagery. Our newest effort, called Project 

Sidewalk, enables online crowdworkers to remotely label pedestrian-related accessibility problems 

by virtually walking through city streets in Google Street View. Rather than pulling solely from 

local populations, our potential pool of users scales to anyone with an Internet connection. In 2019, 

we completed an 18-month deployment in Washington, D.C.: 1,150+ users provided over 200,000 

geo-located sidewalk accessibility labels and audited 3,000 miles of D.C. streets. With simple 

quality control mechanisms (e.g., majority vote), we found that minimally trained remote crowd 

workers could find and label 92 percent of accessibility problems in street view scenes, including 

missing curb ramps, obstacles in path, surface problems, and missing sidewalks. 

Aided, in part, by PacTrans funding, we have now deployed Project Sidewalk into ten cities 

across the world. Overall, 11,000 users have contributed over 720,000 labels and 400,000 

validations. To our knowledge, this is the largest, most granular open dataset on sidewalk 

accessibility in existence. This unprecedented dataset enables new types of urban accessibility 

analyses not previously possible, which is the focus of our work and our report. Specifically, we 

report on the (1) expansion of Project Sidewalk into three additional cities, including La Piedad, 

Mexico, Oradell, New Jersey, and Amsterdam, The Netherlands; (2) an initial correlative analysis 

of how sidewalk accessibility/condition corresponds to socioeconomic factors; and (3) tool 

development and an initial study of combining Crowd+AI techniques to determine how sidewalk 

accessibility is changing over time in cities. 

 

  

https://projectsidewalk.org/
https://projectsidewalk.org/
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CHAPTER 1. PROJECT GOALS AND RESEARCH THREADS 

 

Sidewalks provide a safe, off-road pathway for pedestrians, help interconnect mass 

transportation services like bus and rail, and support commerce and recreation [9,16]. For 

individuals with a mobility disability, sidewalks play a crucial role in independence [18], quality of 

life [17], and overall physical activity [6]. However, unlike for their road counterparts, for 

sidewalks there is a lack of high-quality datasets and fast, inexpensive, and reliable assessment 

techniques. This limits how sidewalks and sidewalk accessibility can be studied in cities. 

Traditionally, sidewalk assessment has been conducted via in-person street audits 

[30,33,34], which are labor intensive and costly. While crowdsourcing approaches like 

SeeClickFix.com, Wheelmap.org, and Mapeatón [7] involve community members in reporting 

inaccessible infrastructure with smartphone cameras, these tools require conscientious volunteers 

with on-site knowledge, can be logistically difficult to manage, and limit both who can supply data 

and how much data each individual can supply 

In our work, we are exploring complementary sidewalk auditing approaches that are fast, 

reliable, and low-cost and use a combination of remote crowdsourcing, machine learning (ML), and 

online map imagery. Previously, we received PacTrans funding for  Project Sidewalk, a web tool 

that enables online users to remotely label sidewalks and identify accessibility problems by 

virtually walking through city streets [26,27]—similar to a first-person, immersive video game 

(figure 1.1). For each label, users provide a severity score, mark relevant tags, and also supply 

open-ended descriptions. Labels are used to create new urban accessibility visualizations, inform 

government policy and funding decisions, and train deep learning networks to assess sidewalks 

automatically—further scaling our approach [39]. Rather than relying solely on local populations, 

our potential user pool scales to anyone with an Internet connection and a web browser. In a 2018 

pilot deployment, 1,400 users from across the world virtually audited 2,934+ km of Washington, 

D.C., streets, providing 255,000 sidewalk accessibility labels with 92 percent accuracy [28]. 

 
  

http://sidewalk.cs.washington.edu/
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Figure 1.1 (a)  A screenshot of Project Sidewalk, which combines crowdsourcing and machine 
learning to scalably map and assess sidewalk accessibility. Here, a user is virtually inspecting 

Mexico City and has marked the corner with two missing curb ramps (red labels) and the 
unavoidable stairs as a surface problem (orange). (b) All of Project Sidewalk data and tools are 
open source, which has enabled others to create visualizations and perform data analysis. Shown 

here, a screenshot of a user’s own visual analytics tool for Washington, D.C., sidewalks, using our 
data and APIs. (c) Visualizations of the sidewalk accessibility data collected in Washington, 

D.C.—the scale and scope of Project Sidewalk data across cities enables new urban 
accessibility analyses not previously possible. 

 

Aided, in part, by an initial PacTrans Small Proposal in 2019, we have built on our 

successful pilot deployment in DC and established new partnerships with local governments and 

non-governmental organizations (NGOs). At the time of writing our follow-up 2020 PacTrans 

proposal (the focus of this report), Project Sidewalk was deployed into six cities, including Seattle, 

Washington,  Newberg, Oregon,  Columbus, Ohio, Pittsburgh, Pennsylvania, Mexico City, Mexico, 

San Pedro, Mexico, and had collected 400,000 geo-located sidewalk labels. 

1.1.   Proposed Work 

In our proposal, we outlined a plan to leverage Project Sidewalk’s unique cross-regional 

sidewalk dataset and investigate the following research questions via new data analytics and 

visualization tools. Our first aim, however, was to deploy Project Sidewalk into additional areas to 

support our work. 

https://sidewalk-sea.cs.washington.edu/
https://sidewalk-sea.cs.washington.edu/
http://sidewalk-newberg.cs.washington.edu/
http://sidewalk-newberg.cs.washington.edu/
http://spgg.projectsidewalk.org/
http://spgg.projectsidewalk.org/
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1. Continue expansion of Project Sidewalk into two to four additional cities to support 

our cross-regional work? 

2. What are the geo-spatial patterns and key correlates of urban accessibility? How 

does accessible infrastructure correspond to racial and socioeconomic factors or other 

metrics such as house pricing, school ratings, park density, and transit access.? Who 

appears to be primarily impacted? 

3. How do sidewalk patterns compare across cities? What are the main accessibility 

barriers and how can/should we categorize them? How do these barriers reflect the 

socio-cultural, economic, and political context of those regions? 

4. How does urban accessibility change over time? We propose adapting our 

crowdsourcing + machine learning techniques to examine street scene imagery across 

time, which will enable new temporal analyses focused on how and where sidewalks 

and sidewalk accessibility change over time. 

Below, we enumerate progress within each thread (one chapter per thread). We have not yet 

made substantial progress on Thread 3; however, so threads 2 and 3 are combined. 
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CHAPTER 2. EXPANDING PROJECT SIDEWALK DEPLOYMENTS 

 

Since being awarded this PacTrans grant, we have continued our expansion of Project 

Sidewalk into additional cities (as originally proposed), including La Piedad, Mexico; Oradell, New 

Jersey; and Amsterdam, The Netherlands (figure 2.1). Each new deployment has been conducted 

with a local NGO and/or government and typically initiated by local community members. We 

have now collected over 720,000 sidewalk labels and 400,000 validations from 11,000 users. To 

our knowledge, this is the largest and most granular open dataset on sidewalk condition in the 

world. 
 

 

Figure 2.1 Since being awarded this small grant, Project Sidewalk has expanded into additional 
cities, including La Piedad, Mexico; Oradell, New Jersey; and Amsterdam, The Netherlands. 
These new deployments are largely being driven by local community members, NGOs, and 

disability organizations. 
 
 

2.1.   La Piedad, Mexico 

The La Piedad, Mexico, (http://la-piedad.projectsidewalk.org) deployment was initiated by 

local geographer Jesus Medina Rodriguez from the Centro de Estudios en Geografía Humana at El 

Colegio de Michoacán, A.C. Rodriguez originally contacted us via our Project Sidewalk Twitter 

account. Together with the NGO Liga Peatonal—which is a pedestrian advocacy organization 

based in Mexico that has helped with all of our other Mexican-based deployments—we have begun 

http://la-piedad.projectsidewalk.org/


6 

an initial pilot deployment in La Piedad, Mexico (figure 2.2). La Piedad is a municipality located at 

the northwest corner of the Mexican state of Michoacán and has a population of 99,837. 

 

 

Figure 2.2 A map of our pilot deployment in La Piedad, Mexico. Each circle represents a geo-
located accessibility label color-coded by label type. For example, orange is a “surface problem” 

and purple is “no sidewalk.” Thirty-five users have audited 8.3 miles of the 11.3-mile pilot 
neighborhood (73 percent), contributing 3,006 labels and 800 validations 

 

Rodriguez is also leading our efforts to work with the local La Piedad government. With 

Rodriguez, local city officials, and Liga Peatonal, we have met together to better understand how 

Project Sidewalk can serve them. Thus far, 35 users have audited 8.3 miles of the 11.3-mile pilot 

neighborhood (73 percent), contributing 3,006 labels and 800 validations. 

One ongoing concern has been about the Google Street View car drive-through rate. As 

Project Sidewalk is completely dependent on Google Street View (GSV) for streetscape images 

used to evaluate sidewalks, the timeliness of capture is important. We wrote a custom Python script 

to examine GSV capture dates and found that 50 percent of La Piedad streets have GSV imagery 

from 2019 or later. The most recent capture date was June 2021, and the least recent was December 

2008. We plan to study GSV availability and how frequently it is updated in a future project along 

with UW epidemiologist Stephen J. Mooney. 
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Figure 2.3 A spatio-temporal analysis of Google Street View panorama capture dates in La Piedad, 
Mexico, showing that over 50 percent of the images captured were from 2019 or later; however, 

some images dated back to 2011 or before. 
 

2.2. Oradell, New Jersey 

Together with the Oradell New Jersey Girl Scouts, the Bergen County Community Council 

of the National Multiple Sclerosis Society, and Hackensack Meridian School of Medicine, we 

deployed Project Sidewalk into Oradell, New Jersey (http://oradell.projectsidewalk.org/) (figure 

2.4). Here, we have used Project Sidewalk as a service-learning platform for the Girl Scouts and 

local community to learn about urban design, human mobility, and disability and equity while 

contributing valuable data. We have hosted both virtual and in-person mapathons. This 

collaboration was initiated by a medical student and wheelchair user Kie Fujii. 

Thus far, in Oradell, 72 users have audited 100 percent of the community (35.9 miles of 

streets), contributing over 8,800 geo-located sidewalk accessibility labels and 7,841 validations. 

The next stage is to have the Girl Scouts perform some basic analyses and present their results to 

the city council. We plan to publish a paper examining Project Sidewalk as a service-learning 

http://oradell.projectsidewalk.org/
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vehicle and platform to learn about urban design and disability, and to provide data science-related 

skills. 

 

 

Figure 2.4 A map of our Project Sidewalk deployment in Oradell, New Jersey, which is in 
collaboration with the Oradell New Jersey Girl Scouts, the Bergen County Community Council of 
the National MS Society, and the Hackensack Meridian School of Medicine. Thus far, 72 users 

have audited 35.9 miles of streets, contributing over 8,800 geo-located sidewalk accessibility labels 
and 7,841 validations. 

 

2.3. Amsterdam, The Netherlands 

For our first city in Europe, we worked with the disability advocacy organization 

WorldEnabled.org, led by Victor Pineda, and the city of Amsterdam (Gemeente Amsterdam) to 

deploy into Amsterdam (figure 2.5). They are also working with community members and, 

specifically, a disability organization for workforce development to help collect data. Thus far, 320 

users have assessed 255.6 mi of city streets, collecting 27,000 labels and 21,472 validations 
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Figure 2.5 A map of our Project Sidewalk deployment in Amsterdam, The Netherlands, which is 
in collaboration with the disability advocacy organization WorldEnabled.org, led by Victor 

Pineda, and the city of Amsterdam itself (Gemeente Amsterdam). 
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CHAPTER 3. SPATIAL PATTERNS OF SIDEWALK INACCESSIBILITY 

 

Building on our growing Project Sidewalk dataset, we proposed to examine key correlates 

of sidewalk availability, connectivity, and quality as measured by our Project Sidewalk techniques, 

combined with secondary datasets including population density, road type, land use, census tracts, 

real estate pricing, and building age. We also proposed to extend previous work examining 

socioeconomic and racial disparities in pedestrian safety and physical activity [22,42] by 

incorporating our enhanced sidewalk-related measures. 

In preliminary work, we created a heatmap density plot of sidewalk accessibility problems 

in our Project Sidewalk Washington, D.C., dataset (see figure 3.1). We incorporated both label 

frequency and label severity via weighted scaling, which was parameterizable to accommodate 

different mobility disabilities. We found a higher density of surface problems and sidewalk 

obstacles along the southeastern corridor of the city along the Anacostia River, a historically Black 

neighborhood. Interestingly, we also found a higher precedence of accessibility problems in one of 

the most affluent D.C. neighborhoods, Georgetown, perhaps because of policies aimed at 

preserving historic cobblestone walkways—but at a cost of accessibility. Other models of assessing 

urban accessibility are also possible. Figure 3.1b, for example, shows that we scored street-level 

accessibility based on both problem density and street slope. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.1 (a) A heatmap visualization of sidewalk problem density allowing for a glanceable 
overview of hotspots (lighter areas are worse). The two callouts highlight problematic areas: 

Anacostia, a historically lower socioeconomic area that is 92 percent Black, and Georgetown, an 
affluent, historic area that is 82 percent White. (b) A street-level visualization of the same data 

(here, darker is worse), which better highlights topological information. 
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We have now shifted to more quantitative methods. However, this work is ongoing and yet 

to be published. As a pilot study, PhD student Chu Li examined Project Sidewalk data from Seattle, 

Washington (https://seattle.projectsidewalk.org/api), which includes 207,726 labels and 182,695 

validations from 4,163 users (see figure 3.2). For external datasets, we used the following: 

• Sidewalk Geometry Data from the City of Seattle GIS Program 

• Seattle Census Block Groups Geometry from the Seattle City GIS Program 

• Market Profile Data 2020 from Social Explore. 

 

Figure 3.2 The spatial distribution of collected sidewalk labels by (a) severity and (b) label type. 
 

For our analysis approach, we associated Project Sidewalk labels with the sidewalk 

geometries published by Seattle Department of Transportation (SDOT). We then normalized label 

counts by dividing label counts by total sidewalk lengths. To examine statistical relationships 

between sidewalk quality and socioeconomic factors, including population, income, rent, mode of 

transit, and quality of life (these factors were all pulled from  Market Profile Data from Social 

Explore), we used the Pearson’s correlation coefficient,. Below, we present some initial results 

showing correlations between sidewalk quality and population characteristics (figure 3.3) and 

modes of transportation (figure 3.4), respectively. 
 

https://seattle.projectsidewalk.org/api
https://data-seattlecitygis.opendata.arcgis.com/datasets/ee6d0642d2a04e35892d0eab77d971d6_2/about
https://data-seattlecitygis.opendata.arcgis.com/datasets/e5f0eabd10d54d63a0534d27217d702a_3/about
https://www.socialexplorer.com/data/EASI2020/documentation/ba811ce3-253f-400f-8bd2-f3bd2081b606
https://www.socialexplorer.com/data/EASI2020/documentation/ba811ce3-253f-400f-8bd2-f3bd2081b606
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Figure 3.3 Scatter graphs showing more curb ramps per mile in areas of higher population density. 
 

 
 

Figure 3.4 Scatter graphs showing a positive correlation between the availability of curb ramps and 
the number of people who reported walking to work. 

 

Unsurprisingly, there were more curb ramps per mile in areas of higher population density. 

We also found a positive correlation between the availability of curb ramps and the number of 

people who reported walking to work. This work is preliminary. We would like to incorporate 

severity-weighted counts, examine more label types, and repeat our analyses across Project 

Sidewalk cities (partially addressing Thread 3). 
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CHAPTER 4. TRACKING URBAN ACCESSIBILITY OVER TIME 
 
Thread 4’s focus is on adapting and creating new Crowd+AI tools to study how sidewalk 

accessibility is changing over time in US cities. 

4.1. Introduction 

In 1990, the U.S. passed the Americans with Disabilities Act (ADA) requiring that public 

infrastructure—including sidewalks and street crossings—be accessible. Yet, more than 30 years 

later, cities struggle to meet accessibility requirements, often only pursuing large-scale sidewalk 

renovations in response to civil rights litigation, such as in New York [14], Seattle [11], and Los 

Angeles [24]. Observing these challenges and to help stimulate and structure ADA renovations and 

city planning, in 2015, the U.S. Federal Highway Administration requested that local governments 

develop sidewalk ADA transition plans, including an inventory of accessibility barriers and 

descriptions of accessible renovations [37]. However, in a recent study of 401 municipalities only 

54 (13 percent) had published plans, and only seven had met the minimum ADA criteria [10]. 

Such findings reflect the challenges of making infrastructure accessible. Viable solutions 

require substantial political, economic, and technical investment—training, resources, community 

involvement, specialized tools, and the work and coordination of multiple governmental agencies 

[25]. In addition, there is a lack of open tools, techniques, and datasets to track how urban 

infrastructure is becoming more or less accessible. 

4.1.1.  Overarching Questions and Scope of Work 

To help understand how sidewalks are changing, where resources are being invested, and 

whether governments are acting on ADA requirements, our research group is developing new 

spatiotemporal tracking tools to analyze, visualize, and study changes in urban accessibility over 

time. With our tools, we hope to support overarching research questions such as the following: 

• How does sidewalk infrastructure change over time? 

• What are the spatiotemporal patterns of change? 

• How do these changes correspond to socioeconomic and demographic factors? 

• Where does inaccessibility persist? 

As a preliminary step toward addressing these questions, we introduced three new 

experimental Crowd+AI (artificial intelligence) prototypes for semi-automatically tracking changes 

in street intersections, specifically curb ramps (or “curb cuts”)—figures 4.1 through 4.3. While 

curb ramps are only one part of accessible urban infrastructure, they are critical to mobility and 
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required by the ADA. Moreover, previous work has found that trained computer vision (CV) 

models can detect curb ramps at higher accuracy than surface degradations or sidewalk obstacles 

[13,40], making curb ramps a good starting place for initial crowd+AI work. 

4.1.2.  Crowd+AI Solutions 

Studying and characterizing spatiotemporal patterns of urban change from remote imagery 

is a longstanding area of interest in the urban- and geo-sciences [15,32,41]. Recent developments 

in CV, specifically deep learning, and the widespread availability of historic street-level imagery 

have enabled new urban change detection techniques [3,5,20,29,38]. However, limited work has 

been done on applying these techniques to urban accessibility to characterize how and where 

sidewalks are changing. Below, we describe design considerations for tracking accessibility-related 

changes in street intersections, three preliminary Crowd+AI prototypes, and results from a pilot 

usability study with five users that was published as a poster paper at ASSETS’21 in October 2021. 

4.2. UI Design Considerations for Tracking Changes in Sidewalks 

In brainstorming and working on initial prototypes, we developed the following design 

considerations: 

• Humans struggle with change detection. Studies in perceptual psychology have 

consistently found that humans perform poorly in identifying differences between 

images [23,31]. How can we create tools that help humans identify and label 

accessibility features in time-series imagery while mitigating these perceptual effects 

[31]? 

• Leveraging temporal similarity. Unlike general street scene labeling tasks [8,21], we 

are interested not just in identifying objects in a single snapshot but in tracking these 

objects over time. How can we leverage structural similarities in time-series 

photography to create efficient and accurate labeling interfaces? 

• Combining AI + human labeling. Similarly, how can humans + machine learning 

work together to maximize labeling efficiency and accuracy [4,19]? How should AI-

based detections and uncertainty be represented to humans? Can the underlying ML 

model also leverage similarities across time-series images? 

• Interactive training. Ultimately, to scale our approach, we will deploy our interfaces to 

crowdworkers who likely have minimal experience with sidewalks, curb ramps, and 

advanced labeling interfaces. How can we develop interactive training user interfaces 

that allow our users to quickly learn and perform accurately in our tasks? 
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4.3. Three Crowd+AI Interfaces for Tracking Curb Ramps Over Time 
 

Given the above considerations, we have developed three early-stage interactive prototypes 

for tracking changes in street intersections over time. These differ in the amount of simultaneous 

time-series imagery shown, how labels propagate from one time-series snapshot to the next (using 

a derivation of linked editing [35]), and how we incorporate a deep learning model for automatic 

curb ramp detection (from [40]). Rather than ask users to detect changes, users find and label curb 

ramps in each image. To improve labeling efficiency, we leverage similarities across time shots to 

auto-propagate labels through linked editing and CV. Each prototype begins with a step-by-step 

tutorial to train users on the task and the interface. 

For our historic street scene dataset, we have used Google Street View’s “time machine” 

feature, which provides high-resolution street-level panoramas dating back to 2007 captured 

approximately every one to three years. Our test set consists of 100 intersections drawn from 

Washington, D.C., and Seattle (50 each). The D.C. dataset contains an average of 6.4 time-series 

images per location (SD=1.7), while Seattle has 7.8 (SD=2.6). The first capture dates are 2008 and 

the last are 2019 (while our research is ongoing, this initial test dataset was created in 2019). 

The three prototypes are listed and described below.  
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4.3.1.  Prototype 1: Single View 
 

 
 

Figure 4.1. With Prototype 1 (P1): Single View, users label time-series images of individual street 
corners (in this case, from May 2019 to June 2008). The thumbnail menu shows available time-

series images at the selected corner, which update in real time as users draw bounding-box labels 
with their mouse. Checkboxes indicate a completed (labeled) time snapshot. Automatically 

detected ramps are indicated with small red squares, which we can be turned on/off. We plan to 
conduct experiments to examine the potential benefits of these automatic detections, particularly 

given that they are not always accurate. 
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4.3.2.  Prototype 2: Grid View 
 

 
 

Figure 4.2. With Prototype 2 (P2): Grid View, thumbnails are larger and presented in a grid, 
allowing us to show up to nine time-series images simultaneously. Unlike P1, P2 uses linked 

editing [36] to leverage structural similarities across time. When users draw or edit a bounding box 
on the most recent time snapshot (always shown as the top-left thumbnail, which in this case is 

May 2019), these annotations are auto-propagated to all previous time shots using x,y pixel 
location similarity. If CV detections are turned on (red squares), we attempt to auto-align 

propagated boxes based on inferred curb ramp locations; however, these alignments are not always 
accurate because of noise in the ML model (e.g., there are two incorrect CV detections on the July 

2011 time shot above). The user can make micro-edits or deletions, as necessary, on the 
propagations. 
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4.3.3.  Prototype 3: Panorama View 
 

 
 

Figure 4.3. Similar to P2, Prototype 3 (P3): Panorama View also includes linked editing [36] and 
auto-propagation of labels across time. However, unlike P1 and P2, which serve segmented 
intersections cropped into four individual images (one corner per image), P3 presents full 

panorama views. The benefits of panoramas include greater context for the user and potentially 
faster overall labeling. However, the curb ramps themselves are small, and only about three to four 
time-series panoramas can fit on a laptop screen, so users need to scroll to access older images. To 
help users more closely examine panorama parts, we have an always-available zoom inset of the 

mouse location (shown currently at the May 2019 panorama above). In this particular example, the 
intersection was renovated between June 2008 (bottom pano) and July 2011 with ADA compliant 

ramps and three ramp additions. These changes are identified with our techniques. 
 

4.4.   Pilot Usability Study 

To assess the usability and understandability of our prototypes and to prepare for larger 

web-based deployments, we conducted an in-person “think aloud” usability study with five 

participants (ages 20 to 45; all had technical backgrounds). Sessions were ~50 minutes. To simulate 

the experience of using the prototypes in an online deployment, we provided limited instruction 

and, instead, asked participants to follow the interactive tutorials. 

While users were appreciative of the step-by-step tutorials, some aspects of label 

propagation, and the promise of CV-assisted labeling, we found important areas for future work. 

First, participants wanted more information on how they should label—the size of their bounding 

boxes, pixel-level precision, etc. Second, participants were confused about label propagations—

should they trust them or modify them? Because auto-propagations only work in one direction 
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(labeling is propagated backward but not forward through time) and because only some operations 

are supported (additions but not deletions), users did not have a strong understanding or confidence 

in this feature. Finally, though the automatic CV detections (visualized as red squares) were 

deemed helpful in drawing attention to curb ramps, participants felt that it was too often incorrect 

and thus distracting (though one participant enjoyed “outperforming” the AI). 

4.5. Future Work 

In this preliminary study, we introduced three novel Crowd+AI tools aimed at rapidly 

labeling and tracking changes in sidewalk accessibility features over time. In addition to addressing 

results from our usability study, we aim to support richer qualitative labels about how curb ramps 

are changing (e.g., tactile strips, flares, steepness) and other accessibility-related labels for 

crosswalks [1,2], accessible pedestrian signals [12], and street/sidewalk surfaces. We also plan to 

conduct a larger-scale deployment study to further assess our tools and progress toward public 

deployment, like Project Sidewalk, for tracking changes in urban accessibility infrastructure across 

cities and creating open “change tracking” datasets.  
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